Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats.

نویسندگان

  • Seonkyung Lee
  • Danthu H Vu
  • Michael F Hinds
  • Steven J Davis
  • Alvin Liang
  • Tayyaba Hasan
چکیده

Photodynamic therapy (PDT) is a promising cancer treatment that involves optical excitation of photosensitizers that promote oxygen molecules to the metastable O(2)(a(1)Delta) state (singlet oxygen). This species is believed to be responsible for the destruction of cancerous cells during PDT. We describe a fiber optic-coupled, pulsed diode laser-based diagnostic for singlet oxygen. We use both temporal and spectral filtering to enhance the detection of the weak O(2)(a-->X) emission near 1.27 microm. We present data that demonstrate real-time singlet oxygen production in tumor-laden rats with chlorin e6 and 5-aminolevulinic acid-induced protoporphyrin photosensitizers. We also observe a positive correlation between post-PDT treatment regression of the tumors and the relative amount of singlet oxygen measured. These results are promising for the development of the sensor as a real-time dosimeter for PDT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of singlet oxygen production for PDT treatments both in vitro and in vivo using a diode laser-based singlet oxygen monitor

Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses photosensitizers that are selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in their metastable singlet delta state, O2(∆), are believed to be the species that destroys ca...

متن کامل

Pulsed diode laser-based monitor for singlet molecular oxygen.

Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Delta) are believed to be the species th...

متن کامل

Photosensitization of coronene–purine hybrids for photodynamic therapy

Photosensitization properties of coronene-purine (Cor-P) hybrids for photodynamic therapy (PDT) have been investigated in this work. Eight hybrid Cor-P models have been designed by the additional of adenine (A) and guanine (G) nucleobase to Cor species. The evaluated absorption and emission energies indicated that the singular models are not good at all for PDT process whereas their hybrid mode...

متن کامل

Evaluation of Photodynamic Therapy with 660 nm Diode Laser and Different Concentrations of Methylene Blue on Candida Albicans growth on Denture(laboratory study)

Background and Aim: Candida has an important role in denture-dependent stomatitis. The use of lasers and light-absorbing materials to act against this fungus has been suggested in some studies. In this study, the antifungal effects of 660 nm diode laser with different concentrations of methylene blue as a light absorbing agent against Candida albicans grown on dentures was investigated. Materia...

متن کامل

Effect of Low Frequency Low-Level Infra-Red Diode Laser Therapy on Third Degree Burn Healing in Rats Skin

Purpose: The aim of present investigation was to evaluate low frequency low-level infra red diode laser therapy for a third degree burn healing in rats skin.Materials and Methods: 36 rats were divided into groups one and two. On day zero three third degree burns were made on the dorsum of each rat by steam. In group one ,first burn were exposed to a 80 Hz –pulsed 890 nm infra red diode laser wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2008